Mining the change of customer behavior in fuzzy time-interval sequential patterns
نویسنده
چکیده
Comprehending changes of customer behavior is an essential problem that must be faced for survival in a fast-changing business environment. Particularly in the management of electronic commerce (EC), many companies have developed on-line shopping stores to serve customers and immediately collect buying logs in databases. This trend has led to the development of data-mining applications. Fuzzy time-interval sequential pattern mining is one type of serviceable data-mining technique that discovers customer behavioral patterns over time. To take a shopping example, (Bread, Short, Milk, Long, Jam), means that Bread is bought before Milk in a Short period, and Jam is bought after Milk in a Long period, where Short and Long are predetermined linguistic terms given by managers. This information shown in this example reveals more general and concise knowledge for managers, allowing them to make quick-response decisions, especially in business. However, no studies, to our knowledge, have yet to address the issue of changes in fuzzy time-interval sequential patterns. The fuzzy time-interval sequential pattern, (Bread, Short, Milk, Long, Jam), became available in last year; however, is not a trend this year, and has been substituted by (Bread, Short, Yogurt, Short, Jam). Without updating this knowledge, managers might map out inappropriate marketing plans for products or services and dated inventory strategies with respect to time-intervals. To deal with this problem, we propose a novel change mining model, MineFuzzChange, to detect the change in fuzzy time-interval sequential patterns. Using a brick-and-mortar transactional dataset collected from a retail chain in Taiwan and a B2C EC dataset, experiments are carried out to evaluate the proposed model. We empirically demonstrate how the model helps managers to understand the changing behaviors of their customers and to formulate timely marketing and inventory strategies. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
A change detection method for sequential patterns
a r t i c l e i n f o Recent trends in customer-oriented markets drive many researchers to develop sequential pattern mining algorithms to explore consumer behaviors. However, most of these studies concentrated on how to improve accuracy and efficiency of their methods, and seldom discussed how to detect sequential pattern changes between two time-periods. To help business managers understand t...
متن کاملConstraint-based sequential pattern mining: a pattern growth algorithm incorporating compactness, length and monetary
Sequential pattern mining is advantageous for several applications for example, it finds out the sequential purchasing behavior of majority customers from a large number of customer transactions. However, the existing researches in the field of discovering sequential patterns are based on the concept of frequency and presume that the customer purchasing behavior sequences do not fluctuate with ...
متن کاملAmalgamation of IDS Classification with Fuzzy Techniques for Sequential Pattern Mining
Intrusion detection system has been a powerful weapon to protect networks from attacks and has gained more and more attention. Data mining has been proven as an important method to detect intrusions. Fuzzy logic based methods together with the techniques from Artificial Intelligence have gained importance. Sequential pattern mining, which discovers frequent subsequences as patterns in a sequenc...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملAn approach to optimize Fuzzy Time-Interval Sequential Patterns using Multi-Objective Genetic Algorithm
Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data-mining problem with broad applications. From these discovered sequential patterns, we can discover the order of the patterns; however, they cannot tell us the time intervals between successive patterns. Accordingly, Chen et al. have proposed a fuzzy timeinterval (FTI) sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 12 شماره
صفحات -
تاریخ انتشار 2012